Probabilistic Active Learning of Functions in Structural Causal Models

نویسندگان

  • Paul K. Rubenstein
  • Ilya O. Tolstikhin
  • Philipp Hennig
  • Bernhard Schölkopf
چکیده

We consider the problem of learning the functions computing children from parents in a Structural Causal Model once the underlying causal graph has been identified. This is in some sense the second step after causal discovery. Taking a probabilistic approach to estimating these functions, we derive a natural myopic active learning scheme that identifies the intervention which is optimally informative about all of the unknown functions jointly, given previously observed data. We test the derived algorithms on simple examples, to demonstrate that they produce a structured exploration policy that significantly improves on unstructured base-lines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning temporal probabilistic causal models from longitudinal data

Medical problems often require the analysis and interpretation of large collections of longitudinal data in terms of a structural model of the underlying physiological behavior. A suitable way to deal with this problem is to identify a temporal causal model that may effectively explain the patterns observed in the data. Here we will concentrate on probabilistic models, that provide a convenient...

متن کامل

How Causal Reasoning Can Bias Empirical Evidence

Theories of causal reasoning and learning often implicitly assume that the structural implications of causal models and empirical evidence are consistent. However, for probabilistic causal relations this may not be the case. We propose a causal consistency hypothesis claiming that people tend to create consistency between the two types of knowledge. Mismatches between structural implications an...

متن کامل

A Probabilistic Model of Learning Fields in Islamic Economics and Finance

In this paper an epistemological model of learning fields of probabilistic events is formalized. It is used to explain resource allocation governed by pervasive complementarities as the sign of unity of knowledge. Such an episteme is induced epistemologically into interacting, integrating and evolutionary variables representing the problem at hand. The end result is the formalization of a p...

متن کامل

Joint Probabilistic Inference of Causal Structure

Causal directed acyclic graphical models (DAGs) are powerful reasoning tools in the study and estimation of cause and effect in scientific and socio-behavioral phenomena. In many domains where the cause and effect structure is unknown, a key challenge in studying causality with DAGs is learning the structure of causal graphs directly from observational data. Traditional approaches to causal str...

متن کامل

Academic Language Achievement: A Structural Equation Model of the Impact of Teacher-Student Interactions and Self-Regulated Learning

A correlational survey research design was utilized to investigate self-regulated Learning (SRL) and teacher-student interaction factors that had been realized to have contributive roles in EFL learners' academic success.  A sample of 218 EFL learners (male = 102 and female = 116) was drawn with the aid of a prior sample size calculator for the structural equation models from 645 students. They...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1706.10234  شماره 

صفحات  -

تاریخ انتشار 2017